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Abs t rac t 

The work of Young i n  1950, see Young [1950,19711, showed t h a t  t h e  
Red/Black o rde r ing  and the  na tura l  rowwise o rde r ing  of matrices wi th  Proper ty  
A, such as those  a r i s i n g  from t he  5-point d i s c r e t i z a t i o n  of Poisson's 
e q u a t i o n ,  l ead  t o  SOR i t e r a t i o n  matrices wi th  i d e n t i c a l  e igenvalues .  With t h e  
advent  of p a r a l l e l  computers, multi-color po in t  SOR schemes have been proposed 
f o r  more complicated s t e n c i l s  on 2-dimensional r ec t angu la r  g r i d s ,  see Adams 
and Ortega 119821 f o r  example, but t o  our  knowledge, no theory has been 
provided for t h e  r a t e  of convergence of t hese  methods r e l a t i v e  t o  t h a t  of the  
n a t u r a l  rowwise scheme. 

New r e s u l t s  show t h a t  certain ma t r i ces  may be reordered so the  r e s u l t i n g  
mul t i -co lor  SOR matr ix  has the  same e igenvalues  as t h a t  for t he  o r i g i n a l  
o rde r ing .  I n  a d d i t i o n ,  for a w i d e  range of s t e n c i l s ,  we show how t o  choose 
mul t i -co lor  o rde r ings  so  the mul t i -co lor  SOR matrices have t h e  same 
e igenva lues  as t h e  n a t u r a l  rowwise SOR matrix.  The s t r a t e g y  for ob ta in ing  
t h e s e  o rde r ings  is based on "data flow" concepts  and can be used t o  reach  
Young's conclus ions  above for t h e  5-point s t e n c i l .  

The importance of t hese  resul ts  i s  t h r e e f o l d .  F i r s t l y ,  a c o n s t r u c t i v e  and 
e a s y  means of € ind ing  these  mult i -color ings is a d i r e c t  consequence of the 
theory ;  secondly,  mi l t i - co lo r  SOR methods can be found t h a t  have the  same r a t e  
of convergence as t h e  n a t u r a l  rowwise SOR method for a wide range of s t e n c i l s  
used t o  d i s c r e t i z e  p a r i t a l  d i f f e r e n t i a l  equat ions ;  and t h i r d l y ,  these  mult i -  
c o l o r  SOR methods can be e f f i c i e n t l y  implemented on a wide c l a s s  of para l le l  
computers. 
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1. Introduction 

. 

The s d v e  overrelaxation (SOR) iterative method can be used to solve a linear system of equations, 

and is guaranteed to converge if the matrix A is symmetric and positive definite and the relaxation factor, o, is in 

the interval 0<0<2. If we txprws A as, 

where D J ,  and U are the diagonal, strictly lower and upper triangular parts of A respectively, the SOR iteration 

matrix, f -, is given by (3). 

L, = (D-oL)-'( oU+(l-o)D ) (3) 

~f we reorder the equations in (1) to get the system id=h, the resulting SOR matrix 2u is not guaranteed to have 

the same eigenvalues as f of (3) and b the convergence rates of the two SOR schemes may be different. 

The matrix A frequently arises from the discretization of an elliptic partial differential equation on a rcc- 

tangular region by a local stencil and by numbering the grid nodes in the natural rowwise fashion (left to right, 

bottom to top). For example, for Poisson's equation on a rectangle, we can usc the 5-point stencil and number the 

grid as shown in Figure 1. 

09 01 0 01 1 012 

05  - 06 - 07 a8 

01 a2 03 e4 

F i g u r e  1 .  5-point Stencil  and Natural Rawvise Ordering 

Young[1950,1971] showed that the Red/Black ordering of the nodes as shown in Figure 2 and the ~tura l  rowwise 

ordering of Figure 1 led to SOR iteration matrices with the same eigenvalues. 
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R B R B 
5 11 6 12 

B - R -  B R 
9 3 10 4 

R B R B 
1 7 2 8 

Figure 2. 5-point Stencil and RedAlack Ordering 

Knowing that these SOR matrices have the same eigenvalues is important; sina for parallel complltcrs we can 

choos~ the Red/Black ordcring instead of the natural rowwise ordering without a deg~adation in the asymptotic 

convergence rate. More parallelism is achieved with this ordering since nodw of the same color are not neighbors 

which implies all Rtd and then all Black nodes may be updated simultaneously. 

With the advent of parallel computers, multi-color point SOR schemes have becn proposed for more compli- 

cated stencils on 2-dimensional rectangular grids, see Adams and Ortega[1982] for example, but to our knowledge 

no thwry has been provided for the rate of convergence of these methods relative to that of the natural rowwise 

schanc. This paper will show that the geometry of the stencil can be used to derive a coloring for the region such 

that the multi-color and natural rowwise SOR iteration matrices have the same eigenvalues. The fact that this is 

true for a cless of s t d s  containing those of interest in partial differential equations means that highly pardel 

iterative methods can be formulated which converge equally as well as their sequential counterparts. 

In Section 2, we describe how txying to implement ~tural rowwise SOR for a 9-point stencil on the Denelm 

HEP, Patel and Jordan(1984], led to a strategy based on data flow ideas for f m m  orderings that are highly garal- 

lel and that produce the same iterates as the natural rowwise iteration. ?he ideas in Won 2 are formalized in 

Seaion 3 where we prove that the SOR iteration with the orderings generated by the data flow strategy has the 

same asymptotic rate of convergence as the SOR iteration with particular multialor orderhgs. In Section 4 we 

show how to fmd these multi-color orderings for a wide range of stencils. In Section 5,  we describe some interest- 

ing irnplementation issues for multi-color SOR on various parallel computers. Emally, in conclusion, we 
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summarize our results, mention generalizations of our ideas to block SOR and multiple equations per grid point, 

rn a d  list LlImmmrcd questions. 

In the multiple instruction stream, or MlMD, environment such as that of the Denelcor HE,P, it is useful to 

investigate Jpeedine up thc Stquential rowwise SOR amputation by using multiple instmction streams called 

processes. I€ an arbitrary number of processes are available in the computing environment, we want to investigate 

a MIMD algorithm that implements a parallel SOR iteration that is equivalent to the natural rowwisC SOR alge 

rih. 

The important ideas that this approach yields can best be seen by a spedfic example. We consider the 9- 

point stencil shown in Figure 3. 

0 0 0 

k k k 

0 0 0 

k+1 k+l k 

0 0 0 

k+l k+l k+l 

F i g u r e  3. 9-point Stencil 

The natural rowwise ordering of a rectangular grid imposes the following update rule, or data flow dependencies, 

for the unknown at the center of the stencil: 

c 

NR Stencil Rule 

The value at the center of the stencil for iteration k + l  can be calculated after the values to the left of and below 

center (badward neighbors) have been calculated on iteration k + l  and the values to the right and above center 

(forward neighbors) have been calculated on iteration k. 

This rule is depicted in figure 3 for the %point stencil. 
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To formulate the NR Stencil Rule in the language of data flow, Ackerman[l982], we look at the set of 

n x m x K  updates implied by the rule for unknowns u(')(i j)  at grid point ( i j )  on iteration k, k=l . .K ,  i= l . .n ,  and 

j = l . . m .  We will use ( i j )  to indicate the point in the ith row and jth column of the grid. Thcse Mme a c o m p  

tation in a value oriented, or singloassignment, computational model with initial values do) and boundary values 

considered as constants. In this model all values are viewed as having an independent existence with no concept of 

updatiq a storage location, so that n x m x K storage locations would be needed to store the n x m unknowns on the 

K iterations. It is clear that a sequential rowwisc sweep for iteration 1 followed by one for iteration 2 ,  and so on, 

is not the only scheduling of equation evaluations consistent with rule NR. For example, with the 9-point stendl, 

as soon as d1)(1,l)  and d1)(1,2) have been evaluated the computations for d1)(1,3) and d1) (2 ,1 )  can proceed 

simultanmusly and when d1)(1,2), d1)(2 ,1)  and u(')(2,2) have been computed the iteration 2 value d 2 ) ( 1 , 1 )  can be 

produced. If we assume an arbitrarily large number of proctssors and schedule each computation as early as possi- 

ble then many Computations, possibly d a t e d  with different iterations, will occur simultaneously at points span- 

ning the region. 

In general, to cast this nxrnxK scheduling problem into the form of an iteration on an n ~ n t  region, with 

only n x m  storage locations required, it is convenient to require symmetry of the stencil as explained below. For a 

structurally symmetric stencil, like our example in Figure 3, a point ( i j )  is a furward neighbor of all its backward 

nei@bors and a backward neighbor of all its forward neighbors. Thus, by the time it is possible to compute 

u(k+ l ) ( iJ ) ,  the value d k ) ( i j )  has been used to compute u(&+~) for all backward neighbors and dk) for all forward 

neighbors and these are the only computations which require it. Thus only the "current" iteration value is needed 

at a specific point (ij) and the re-use of an nXm storage array is possible for all the scheduhgs satisfying the NR 

rule. The "current" iteration number may be different for different nodes of the region as a function of the 

s p d i c  schedule. We will assume a structurally symmetric stencil henceforth and use rule NR to refer to the 

k+lst update of the point at the center of the stencil. 

For the 9-point stendl and for many others of interest in PDEs this data flow scheme of scheduling updates 

as early as allowed by rule NR will be shown to lead to multi-color iterative methods. If each ccmputation takes 
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one time unit then a subset R of grid points will be associated with computations scheduled at time t. At t+ l  a 

new subset B of aedes will be computed. If these s d v e l y  scheduled subsets arc diswt ,  exhaust the region, . 
and the time differam betwtm subsequent iteratiom is the same constant for all nodes, then we will show that 

the resulting time schedule has the form of a multi-color iteration. 

To amtinuc ow example, wcQ)s1sidct the 6 by 5 grid of interior nodes that results from disuetizing an8by 

7 grid with the 9-*t s t d  with boundary vduea assumed to be known. This grid is shown in Figure 4 where 

the numben below earh node indicate the carliest times that amsccutive iteratiom can begin at the node aaxmhg 

to the NR Stencil Rule if the computation at a node requires one time unit. 

1 _-__ 
G 0 R B G 

11,15,19,23 12,16,20,24 I 13,17,21,25 14,18,22,26 15,19,23,27 I 
s4 

R 
I I 

R B G 0 
9,13,17,21 10,14,18,22 11,15,19,23 12,16,20,24 I 13,17,21,25 

6 

1 
G 0 R B G 

7,11,15,19 8,12,16,20 9,13,17,21 10,14,18,22 11,15,19,23 I 
I s3 

R E G R 
5, 9.13.17 6,10,14,18 7,11,15,19 

G 0 R B G 
3, 7,11,15 4, 8,12,16 1 5, 9,13,57 6,10,14,18 7,11,15,19 

R B G 0 R 
1, 5, 9,13 2, 6,10,14 3, 7,11,15 4, 8,12,16 ! 5, 9,13,17 . 

S1 

Figure 4. Earliest T h e 1 3  for the 9-point Stencil 

Notice that each node updates every A t 4  time units. The solid hes in Figure 4 separate the nodes into four dis- 

joint sets, denoted SI , Sz , S3 , and S, with set S, containing nodes that update for the first time during times 1 to 
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A f ,  S, containing nodes with first update times in the interval Af+1 to 2Af, etc. These sets will be formally 

defied later. The following statements can be made from Figure 4 by observing these earliest update times. Note 

that at times (1,2,3,4) iteration 1 can be done on the nodes in SI, at tknes (5,6,7,8) iteration 1 can be done on the 

nodes in S, and iteration 2 on the nodes in SI; at times (9,10,11,12) iteration 1 on set S,, iteration 2 on S2 and 

iteration 3 on SI can be done; at times (13,14,15,16) iteration 1 on S,, iteration 2 on S3, iteration 3 on S,, and 

iteration 4 on SI can be done; at times (17,18,19,20) iteration 2 on Sq, iteration 3 on S3 and iteration 4 on Sz can 

be done; at times (21,22,23,24) iteration 3 on S,, iteration 4 on S, can be done; and finally at times (25,26,27) 

iteration 4 can be done on S.,. 

At this point, it is instructive to remark on the difference between a dataflow scheme of assigning times to 

the nodes and an an or&ring of the nodes as reflected by the order of the equations of A in (1). For the 30 nodes 

(30 equations) in Figure 4, the scheme of assigning update times at a node,to be the earliest times for which the 

data for the node was available according to the NR Stencil Rule resulted in 15 unique times being assigned to the 

nodes on the first iteration; whereas, an ordering must assign the integers 1 to 30 to the nodes. However, there 

are orderings that are consistent with the NR Stencil Rule that can be constructed by considering the update times 

for the first iteration that resulted from the data flow scheme. We define these orderings in Defdtion 1. 

Dcfinirion 1 I 

An NR datojbw ordering of the nodes of a grid is an ordering by the first earliest update times according to the 

NR rule with ties being rtsolvcd arbitrarily. 

"here are many orderings of the 30 equaQons of A in (1) that do not violate the NR Stencil Rule, but do not have 

the same update times for the first iteration as shown in Figure 4. One such ordering is the ~tura l  rowwise, left 

to right, bottom to top ordenng. AU orderings that do not violate the NR Stencil Rule are non-migratory permu- 

tations of one another, as described in Young[l971], and will result in SOR matrices with equal eigenvalues. How- 

ever, it is the NR data flow ordcrings that are useful in proving our theorems about particular multi-color SOR 

iterations. 
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M =  

. 

Dl x12 . * Xl, 
x21 D2 - - x2c 

. . . . .  

. .  . . .  
4 1  * . . D, 

A crucial observation is that at tim# (13,14,15,16), nodes from all four sets are being updated and that all 

nodes which can be updated at a particular time, say 13, are not neighbors. Hena, if we color all wdes Red that 

arc updated at time 13, all nodes Bladt that are updated at time 14, all nodes Gaemthat are updated at time 15, 

and all nodes Orange that are updated at time 16 as shown in Figure 4, it is clear that the schtdulc of updates for 

four iterations of SOR Consistent with the NR Stencil Rule conrains one iteration (times 13,14,15,16) of a multi- 

color SOR itexation (WEVGIOSOR) as defmcd by Adams and OrtegN19821. If we order the colors W G ' O  as 

m / 4 ,  a closer examination of Figure 4 also reveals that nodes of color i ins, arecormectcd only to nodes of 

colon greater than i 

any nodes in scts greater than i+l or less than i-1. 

and only to nodes of colors less than i Also nodesins, art not comrected to 

A strategy for proving that the SOR iteration matrix that results from ordering the Red equations first, fol- 

lawed by the Black, Green, and then Orange equations will have the same eigenvalues as the natural rowwise SOR 

iteration matrix has evolved from this example. We now formalizt this strategy. 

3. Theory 

The data flow example of the last section leads us to begin with the following definitions: 

Definition 2. 

A multi-color, or calor, matrix is a c x c  block matrix of the form 

where the Di are diagonal matrices, each assodated with a different color, and the Xi/ are arbitrary. 

Dejhinbn 3. 

A multi-color T manix is a block tridiagonal matrix of the form, 
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where M i ,  2s i s s  - 1, are multi-color matrices with c colors numbered 1. .c respectively; M, is a multi-color matrix 

with c- f + 1 colors numbered f. .c respectively; M, is a multi-color matrix with c<c colors numbered 1. .e respec- 

tively. In addition, the matrices L,, 2 s i s s - 2  are strictly lower c x c  block triangular matrices; the matrix L,  is a 

( c - f + l ) x ( c )  block matrix with blocks 8,=0 if jz i+f- l ;  the matrix Ls-l is a c x e  block matrix with blocks 

B,=O if j r i ;  and the rnatriccs U i ,  i=l..s-1 have the transposed fonn of the matrices L,, i=l..s-l rcs@vely. 

It is easy to show that the matrix that results from permuting the rows and columns of Tu to bring nodes of color 

j from all Mi together into the same block 0, is a rnulti-color ma& With c colors ordered l . .c respectively. Such 

a matrix is called the multi-color matrix rrrsociated with Tw. 

In relation to Figure 4 with W W O  representing colors 1/213/4, the blocks M,, i=1..4 correspond to the four 

sets Si,  i=1..4, with the nodcs in a given block ordered by colors, the value of c=4, the value of f=1 and the 

value of e=3. The matrix T,,, has the following form where D,, indicates the nodes of color i from block M,. 
I 
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The assOciated 4-color matrix iS 

x =  

- 
.- 

D 
11 

D 
12 

D 
21 

D22 

D2 3 

D24 

W e  now prove our major theorem. 

Theorem I 

D31 

D3 2 I 
D3 3 

L 

A multi-color T matrix and its assOciated multi-color matrix have SOR iteration matrices with the same eigen- 

values. 
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Let LT,, be the SOR matrix for the multi-color T matrix 

LC,,, be the SOR matrix for the rnulti-a-dor matrix 

P be the pnmutaticm matrix that transforms the multi-color T 
ordering to the multi-color ordering 

Minition 3 guarantees that a multicolor T matrix is also a banded matrix with sani-bandwidth equal to c-1 with 

the blocks Dij on the diagonal being diagonal blocks. This means that consecutive iterations of SOR can oacu~ for 

every node every c time units. Let Q f k )  represent the set of earliest times, t ,  that the nodes in blocks D, in block 

Mi can be updated on iteration k. specifically, 

efk) = { r  1 (k-l)c+lsrskc-f+1} 

Qlk) = {r  I (k+i -2)c- f+25tS(k+i - l )c - f+1} ,  2Si5s-1 
~ i k )  = { t  I (k+s-2)c-f+2sts(k+s-2)c-f+l+c}  

(4) 

and it follows that iterations s-l,s-2 ,..., 1 can be done on the nodes in blocks M i ,  i=1,2 ,.., s-1 respectively 

before iteration 1 is started on the nodes in block M,. Also, we can amcludc from (4) that at the c times (s+i- 

2)c-f+2 to (s+i-l)c-f+l iraclusively, a multi-color &+, iteration with colors numbered l..c can be done. This sug- 

gests that consider thc matrix Lr,+, in the famed form, 

where the NxlV matrix t i  represents one SOR iteration on the nodes in block Mi of the multialor T matrix. In 

particular, let 

(1) nI be the number of nodes in block Mi 

(2) Zfu)  be the N x N  matrix with a 1 in the diagonal position of the row associated with the Jth node of block Mi 

and zerocs elsewhere 

(3) B,,,) be the N x N  matrix with the row assodated with the jth node of block Mi being equal to the row of the 

Jacobi iteration matrix, B=D-'(L+U),  associated with this node and all other rows being zero. 
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Then .C, can be Written as 

and has the form 

Now, k+s - 1 iterations of multi-color T SOR can be expressed in terms of k iterations of multi-color SOR as 

RP?C:,gs (8) Lk-tr-1 = 
T,U 

where 

R = (L, * . f~L~...(f,L~-~L~- ~ ( f ~ L ~ - ~ ) ( L ~ )  (9) 

since tfer(~T,w)=(l-u)y where N is the size of LT,", it follows that LT,w is nonsingdar if u z I. Hence the fac- 

tors in (5) and R in (8) are nonsingular whenever u f 1. 

So, for o # 1, it follows from (8) that 

f r , w  k+s-l = R ~ ~ L : , Q R - ' R S  

Since the multi-color T matrix is block tridiagonal, the matrix f, commutes with f, if j # i - l , i + l  as is easily 

seen by (7). By applying this fact to the product RS in (lo), we get, 

RS = L+;: (11) 
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F d y ,  the case o=l follows because the eigenvalues of a matrix are continuous functions of the cocfficicnts of 

thematrix,andthetilwranisproved. 

Now, amsider the five sets that would be formed in Figure 4 by lettingf=4. 'Ibis results in a grouping of nodes 

with the earliest first update times of 1, 2-5, 6-9, 10-13, and 14-15 into sets 1 to 5 respectively. This corrtsponds 

to essigning the numbers 1M/4  to the colors BIGIOIR rtsptctively with the ather valua in Definition 2 being c=4 

and e-2. 'Ihe resulting q,, matrix b the same as that for the assignment of 1 m / 4  to the colors W G / O  in the 

previous example; however, the block structure is different, indicating different associated multi-color matrices. 

Also, we could let f=3 and then f=2 and effectively describe WORE3 and o/IuE3G orderings of the equations. 

'Ibis discussion leads to the following Corollary. 

Corollruy 1. 

If the multi-color T matrix results from a NR data flow ordering of the grid points, the c multi-color SOR matrices 

that arise by letting f in Defhtion 2 vary from 1 to c have the same eigenvalues as the natural rowwise SOR 

matrix. 

Prmt  

From Theorem 1 we conclude that the c multi-color SOR matrices have the same eigenvalues as the multi-color T 

SOR matrix. However, the multi-color T ordering is the NR data flow ordering which is j u t  a non-migratory per- 

mutation of the natural rowvise ordering and the corollary follows. 

For our example, the W G / O ,  HGQR, G/O/R/B, and the O/WB/G SOR matrices have the same eigenvalues as 

the natural rowwisc SOR matrix, and thus an iteration done with any of these multi-color matrices will converge at 
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the same asymptotic rate as the iteration using the sequential rowwise matrix. 

The question arises whether there are other four color orderings for the 9-point stencil of Figure 3 that l e d  

to multi-color and natural rOwwise SOR matrices that have the same eigenvalues. We provide a partial answer to 
I 

this question with corollary 2. 

Corollary 2. 

The multi-color SOR matrix d a t e d  with the matrix T,,, in Defhtion 3 and the multi-color SOR matrix that 

results from ordering the equations of T,{ in reverse order have the same eigenvalues whenever T,, is symmetric. 

I 

Prmfi 

Let A, ,  el,, and A2, e,, be the respective multi-color T and multi-color T SOR matrices for the forward and 

revme orders respectively. Then by Theorem 1, the multi-color SOR matrices have the same eigenvalues as 

l and e2,, respectively. It rtmains to show that tl,, and t 2,w have the same eigenvalues. 

Now, let 

whue Di, Li ,  and Vi are defined by (2). 

I€ P is the pennutation matrix from the forward to the reverse ordering, we have, 
I 

P ~ D , P = D , ;  p T L l p = v , .  p T u , p = L z  

1 and 
I 

PQ1,J = ( D ~ - o u J - l ( w L Z + ( l - w ) D )  

~ But since A2 is symmetric, U2=Lr and 
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Since a square matrix has the same eigenvalues as its transpose, and the eigenvalues of a product AB equals the 

eigenvalues of BA, it follows from (3) that fl,,, and e,, have the same eigenvalues and the corollary follows. 

Therefore, for Figure 5, the OIGWR, WOIGIB, BIRIOIG, W O ,  and the natural rowwise ordcsings have SOR 

matrices with the same &gcnvalues whenever the matrix A of (1) is symmetric. 
I 

Obviously, thee arc other 4-color topologies of a rectangular grid that is discretized with the 9-point stencil 

of Figure 3. For example, consider the coloring shown in Figure 6. 

R G R G R  I 
Figure 6. Colurnmimc Colorhg for the 9-paint Stencil 

With the sets indicated in Figure 6, the W W O ,  B/ci/o/R, WOIWB, O/R/BIG ordcrings lead to SOR matriw 

with the samc eigenvalues as the natural columnwise (left to right, bottom to top) SOR matrix. Another example, 

that was given in Adams[1982] is shown in Figure 7 along with the d a t e d  earliest update times for the first two 

iterations. 
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G 0 G 0 
11,15 12,lS 11,15 12,16 

R B R B 
9.13 10,14 9.13 10,14 

G 0 G 0 
7,11 8.12 7,ll 8.12 

R B R B 
5, 9 6,lO 5, 9 s,10 

G 0 G 0 
3, 7 4, 8 3, 7 4 ,  8 

Figure 7. Rovwiee-like Coloring for the 9-point Stencil 

These update times were obtained by considering two different update rules for the grid. The first rule applies to 

the R and G points and is identical to the rule in Figure 3 except the data used from the west neighbor is from 

iteration k instead of k + l .  Ihe second rule applies to the 0 and B points and is like Figure 3 except the data used 

from the east neighbor is from iteration k + l  instead of iteration k. 

The sets indicated above show that f=1, and c=4. Also, the value off can not be changed and still maintain 

a rndti-color T matrix since all colors must be present in each set for the earliest times shown above. Theorem 1 

can be applied to Figure 7 to prove that W W O  SOR has the same eigenvalues as a multi-color T SOR matrix 

that is natural rowwiSe-like in the sense that we update nodes in set 1 before those in set 2, etc., but within sets 

the ordering is W G I O  and is not a nonmigratory permutation of the natural rOWWise ordering. 

So far, we have shown that the 9-point stencil has multi-color orderings with SOR matrices having eigen- 

values identical to those of the SOR matrix for the natural rowwise ordering, the natural columnwise ordering, and 

a rowwise-like ordering. Next, we turn to the practical questions, 
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(1) What s t d  have multi-color and NR SOR matrices with the same eigenvalues? 

(2) How do we find these multi-color orderings? 

In this d o n ,  we Mine a class of stencils for which a discretized rectangular domain has multi-calor order- 

ing~ with SOR matrices that have the same eigenvalues as the natural rowwise (NR) SOR matrix. In addition, wc 

show haw to find these colorings and illustrate the procedure for several well known stencils. We begin with the 

following defhtions. 

DejTninian 4 

A stencil S is a pattern of neighbors for a given node (rJ3. The stencil has (0,O) as its center node and is defied 

relative to (rJ) as follows: (p,q) is said to be a node in stencil S if for al l  ( i j )  in the region, the node ( i + p j + q )  is 

a neighbor of ( i j )  provided it is also in the region. 

Dqtbitbn 5 

A stencil that is strudurally symmetric about node (0,O) is a =stencil. That is, if node (ij) is in the stencil, then 

node ( - i , - j )  is also in the stencil. 

We note that a symmetric stencil leads to a symmetric non-zero pattern in the matrix A of (l), but does not neces- 

sarily lead to numerical symmetry of A. 

Now, r e d  from the 9-point stencil example of the last section that every node could be updated every c 

time units, where c was the number of colors. This fact was reflected in the definition of a multi-color T matrix 

and was necessary to proving that the W G D ,  B/G/O/R, G/QIR/B, apd OIWBIG SOR matrices for Figure 5 had 

the same eigenvalues as the NR SOR matrix. However, update rules based on other orderings, as shown in Fig 

ures 6 and 7, also lead to constant update intervals but may not be equivalent to the NR ordering. We now seek a 

class of stencils for which a constant updating increment is both neceSSary and sufficient to find multi-color order- 

ing~ that are equivalent to the NR scheme. 
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The first step in this direction is to consider stencils for which consecutive nodes in a given row of the grid 

update one time unit apart. 'This is ensured by requiring that a SO stencil contain node (O,l), and likewise, node 

(0,-1). Sucb a stencil is called a (0,l)-SO stencil, and the result is proven in Theorem 2. 

Theorem 2. 

If a rectangular grid is discretized with a (O,l)-SO stencil and an iteration is done at the earliest time according to 

rule NR and requires one time unit to complete, then iteration k for node (iJ+l) begins one time unit later than 

iteration k for node (iJ). 

Proofi 

The proof is by induction on k. For each value of k we induct on i and for each value of i we induct on j .  The 

proof is given in its entirety in the Appendix. 

We remark that we have been able to fiid multi-color orderings for SO stencils with the properties that nodes 

update every c units of time and the SOR matrices have the same eigenvalues as the NR scheme, but do not am- 

tain node (0,l). However, this requirement that a node have an "east" and "west" neighbor is not restrictive fur 

stencils that are commonly used for P D E s  as will be illustrated later. 

The next step is to further restrict the stencil so that a node updates every c time units. Ihe NR rule says 

that the time a node can update on iteration k+l is a function of the times its backward neighbors were updated 

on iteration k+l and the times its forward neighbors were updated on iteration k. -ever, the times the nodes 

update on the fmt iteration are detennineed by the backward neighbor tima only. Since stencils of interest contain 

a node in row -1, it is amvenient to consider stencils fur which a node in row -1 is the last backward node to be 

updated. 'This will be true for node (- 1,u) if nodes strictly below the x-axis and strictly above line L, in Figure 8 

are exduded from the stencil as indicated by the darkened nodes in Figure 8. Node (-1,a) is called the "amtrol- 

ling" backward neighbor. 
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t 

. 

L+=: -(a + 1)y + y (a + 1) + p \ I 

0 0 ' 0 . -  

Y 

L x  

0 0 0 0 0 ' 0  

L p =  -(a+l)y-1 x 
0 0 0 0 O\ 

0 

Figure  8 .  Cxcluded Backward and Forward Neighbors 

Similarily, we require the last forward neighbor to be updated to be above the x-axis in row y and column 

p, pro. This will be true for node (y,p) if we do not allow nodes above line L, to be in the stencil as shown in 

Figure 8. The nodes (-3,0) and (-3,1) are excluded by symmetry of the stencil since (3,O) and (3,-1) are excluded 

as forward neighbors. Node (y,P) is called the "controlling" forward neighbor. Again, this is not a real restriction 

for practical stencils. Figure 8 was the motivation for our major defhtion below. 

D@hition 6 

A Sostencil that contains nodes (O,l) ,  (-l,a), and (y$) with a , p r O  and y>O but does not contain nodes 

{Cy4),Y~-l I x>-(a+lly-l) 
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is an (a ,p ,y ) -SO Stencil. 

The classification of six commonly used stencils as (a,P,y)-SO stencils is shown in figure 9. 

(Y, 6 )  
0 

(V, 6) 
0 0 0 

0 - 0 - 0  I ( 0 , l )  o-o- \'/O ( 0 , l )  

b (-1,Ci) 0 / I \  0 0 (-1,a) 

( O , O , l ) - S o  Stencil ( l , l , l )-so Stencil 

"\Pp 
0 - 0 C . A - 0  

/I\ 
0 0 0 (-1,a) 

(2,0,2)-So Stencil (0,0,2)-SO Stencil 

Figure  9. The Classification of Sane C a m o n  Stencils 

Hence, we sce that it is quite an easy task to find the values of a, p, and y for a given stendl that satisfy Mi- 

tion 6. It is also easy to construct many stencils for given values of a, p, and y. 

In Theorem 3 below, we express the value of c in terms of a, p, and y and describe how to color the grid so 

that c quals the number of colors. 

Theorem 3. 

If a rectangular grid is discretized with an (cx,p,y)-SO stmdl, the matrix A of (1) that results from the NR data 
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flow ordering is a multi-color T matrix with 

c= y (a+ 1) + (p + 1) 

9 colors. Furthermore, if the fmt node is coloredf and node ( i j )  is color 

[P)(ij)+f-2] mod c + 1 

thm the blocks MI, M,, r=2..s-1, and M, contain the nodes in set S,, S,, r=2..s-1, and S, below: 

S, = {(ij) I (~-1)c-f+2~t(l)(ij)~(~-1)~-f+l+e} 

P m f i  

It is sufficient to prove that all nodes can update every c time units, since the above spedfications for M,, r=l..s, 

and the coloring rule follow from this fact. The proof is an induction on k and for each k wc induct on i and use 

Theorem 2 to replace the j induction. The proof is given in the Appendix. 

lheorcm 3 and Corollary 1 show that the c multi-color SOR matrices gotten by letting f vary from 1 to c have the 

same eigenvalue as the SOR matrix associated with the NR data flow ordering. 

5. Implemtntath of Pat.llllel SOR 

The data flow view of rowwisC sequential SOR as a collection of computations to be scheduled as early as 

possible makes it clear that a parallel SOR algorithm is possible for a shared memory MIMD machine. It was the 

investigation of such an algorithm on the HEP computer which stimulated this paper, Patel and Jordan[1984]. The 

fact that stencils of interest lead to the multiaior scheme which updates fmed, disjoint and exhaustive subsets of 

the grid points means that implementation on an SIMD or vector wmputer is also simple. The degree of parallel- 

ism of the algorithm, number of processes in MIMD, or vector length in SIMD is - rn where c is the number of 

9 

c 
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colors. Since the stencils of interest are limited in extent, multi-color SOR is also suitable for MIMD machines in 

which data communication axts are si&icant, such as the processor arrays discussed in Adams[1982]. 

are updated cyclically. nXm In implementing multi-color SOR on a vector computer, c vectors of length - 
C 

Since the vectors consist of subsets of region points and are fued throughout the iteration, it is appropriate to 

reorder the data structure to bring all points of a given color into a single vector. If the n x m  array is stored row- 

wise in memory, the regularity of the coloring pattern for a given stencil on the right sized grid may make it p i -  

ble to form vectors with a constant stride between elements without reordering the data structure. Some vector 

architectures will handle amstant stride vectors directly. The amputation to update the vector of, say, red nodes 

will be a linear combination of the vectors for nodes of other colors. Two or more shifted versions of a vector 

may be used, since the stencil centered on a red point may include more than one, say, black neighbor. Other 

comments on SOR in conneCticm with vector computers can be found in Buzbcc,et al[1977] and Adams[1983]. 

In a shared memory MIMD implementation, the structunn g of data is unimportant. Instead, the main issue 

is that of synchronizing processes so that a scheduling consistent with rule NR results. Potentially, the process 

updating point (ij) for the kth time would have to verify that all backward neighbors have been updated k times 

and all forward neighbors k-1 times. However, for (a ,P,y)-SO stencils, it is sufficient to verify that point (-1,a) 

has been updated k times and point (y$) updated k-1 times. Synchronization at one point in the forward diree 

tion and one point in the backward direction is all that is needed. With shared memory, it is useful to think of the 

proasses moving across the array following a wave of computation. The HEP algorithm mentioned above started 

with order n parallelism by letting one process sweep each row with the sweeps being as simultaneous as possible 

under the synchronization rules. Observing that sweeps for subsequent iterations could be started before the 

n X m  current one finished led to the rnulti-color algorithm with parallelism - 
C 

done by the producer/consumer m- with a computation consuming values from neighbors (-1,a) and 

(y$) and producing two new values, one for each of these neighbors. 

. synchronization on the HEP was . 
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On an MIMD machine where the processors are arranged in an array, it is no longer appropriate to let the 

processes move thmugh the array of procums. A single processor would perfmm Computations for a fixed 

subregion, preferably am- an equal number of points of each color. Syndvonization becomes a by-product 

of the communications required to pass new iterates to other processars which require them. 'Ihe storage organi- 

zation places a node into the local memory of the processor responsible for updating it. 'Ihis situation is 

thoroughly covered in Adams(19821. 

'Ibe results of this paper give the practitioner in numerical partial differential equations the assurance that 

one can use highly parallel multi-color SOR methods that have exactly the same convergence properties that are 

assodated with the rowwist sequential method, and that these particular multialor orderings are easily am- 

~tructeed. TIUS, in this sclls~ SOR i~ color-blind. 

There are, however, colorings, like those in Figures 6 and 7, which decouple the stend on the region which 

have SOR matrices with the same eigenvalues as columnwise and other, less regular, orderings. The relationship 

of SOR with these order& to thc natural rowwise SOR is still an open question in general. However, for the 5- 

point stencil of Figure 10 the Red/Rlack, BladdRed, natural rowWise, and natural columnwise orderings all have 

SOR iteration matrices with equal eigenvalues which corroborates Young's results that were obtained by the use of 

consistently ordered matrices. In addition, for symmetric matrice, our results show that for the &point (1,0,1)- 

SO stencil of Figure 10 all 6 orderings of the unique 3solor pattern which dccouples the stencil lead to NR 

equivalent SOR matrices. ' Ihis means that columnwise and rowvise SOR have the same asymptotic convergence 

rate for this stendl. For the 9-point (l,l,l)-SO of Figure 9, for symmetric matrices, we only exhibited 8 orderings 

using 4 colors that were equivalent to the ruwwise natural ordering. These 8 are a small  fraction of the evaluation 
. 
. ordcrings on several 4 color topologies which decouple the stencil on the grid. 

'The multi-color T matrix M i  here does not appear to lead to the determination of an optunal relaxation 

factor, o, for SOR by relating the eigenvalues to the J w b i  iteration malxix as was the case for Young's T 

matrices. Nevertheless, if the matrix A in (1) is a Stieltjes matrix, a "good" estimate of o can be found so that any 
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ordering (and hence multi-color orderings) will yield a convergence rate which is at least one-half the convergence 

rate associated with the optimal ordering. ' lhis result is due to Kahan and can be found in Young[l97l]. 

The development also makes clear some of the issues involved in implementing multi-color SOR. hensi- 

tivity to a cyclic permutation of the colors and the equivalence of a reversed color cycle to a backwards rOwwiSe 

sweep for symmetric matrices are cases in point. A particularly nice correspondence is that of the points (-1,a) 

and (r,p) to the backward and forward synchronization points of the shared memory MIMD implementation. 

ThC technique of using data flow ideas to find orderings clearly extends to regions of three or more dimen- 

sions as does the shared memory MIMD approach of engaging multiple processes in simultaneous r&se sweeps. 

The equivalencc of a fast s c h m  of the data flow operations to a multicolor scheme will again depend some 

what on stencil geometry so the idea of an (u,P,y)-SO stencil wil l  need to be generalized. 

The extension to block SOR can be done by defining a block multi-color T matrix and by considering the 

(a,p,y)-SO stendl to represent connectivity between blocks of nodes. The convergence rate of block SOR for cer- 

tain block multi-color orderings of mesh problems leading to irreducible Stieltjes matrices has been compared to a 

2-line SOR scheme by O'Leary[l983]. Our results can be used to show that her interesting P3 ordering leads to a 

block multi-color T matrix for which the associated blodc multi-color SOR matrix has the same eigenvalues as a 

blodr columnwise SOR matrix. 

For point SOR with multiple equations per node a multi-color scheme can be formulated in which equation 1 

is evaluated for all points of one color, followed by equation 2 for that color, etc., before moving to the next 

color. An argument equivalent to the current one can be used to show the SOR matrix has the same eigenvalues 

as that for a rowwise sequential sweep of the grid points with all equations being evaluated at a point in the same 

. order as for the color groups in the parallel method. . 



25 

Acknowledgements 

Thanks are due N i i t h  Patel for the practical si& stimulus which led to a cfisrxlssion between one of us, 
0 Burton Smith, Dermis Gannon, Kenneth Batchcr and Gary Rodrigue at a forumn in Oregon, expertly hosted by 

Bill wlzbee of Los Amos and George Michael of Lawrence Livennore National Laboratories. Enthusiastic and 

valuable support WBS provided by Milton Rose, Robext voigt, and Merrd Patrick both ptmmally and through the 

ICASE working environment. James Ortega also contributed discussion and enthusiasm far the work. 



Appcndit 

Proqffor Theorem 2 

Ltt 

S represent the stencil 

&&)(id) = the tarliest time that iteration k can begin for node ( id) 

The proof is by induction onk. 

Ihc proof for k = l  is by induction on i. For i = l ,  the (O, l ) -SO stencil guarantees that ~ l ) ( l j + l ) = t ~ ~ ) ( l ~ ) + l ,  

We assume that 

r")(gJ+l>=t")(gj)+l  

for g<i and prove that 

Now, 

If {g<iIg-i€SR) is empty, then (1) follows immediately from an induction on j ;  otherwise, (2) can be written as 
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Now, if (g<i Ig-i&} is empty, (4) follows from an induction on j ;  otherwise the sccond tenn in (5) can be writ- 

ten as 

(7) mBx [&"')(gJ)+ A,-,+l]+l 
I8 - l€s*l 

and (4) follows from an induction on j and the theorem is proved. 

Proof for Theorem 3. 

It is suffiaent to prove that all nodes can update every c time units, sincc the block definitions and the coloring 

rule given in the theorem trivially follow this fact. since an ( a , p , y ) -  So stencil is also a (O,l)-So stencil, 'Iheorem 

1 implies that we only need to prove that 

J ~ 

sihce cQ)(i,l)= [&l)(g,l)+ A,-,+l], (1) follows from an induction onj.  
bci18-lEsR) 

Scumdly, we assurne &k)(ij+l)=&k)(iJ)+l and prove 

t(k+l)(ij+1) = &&+1)(ij)+I 

(3) 

(4) 

Now, 

since { g r i I g - i E S R }  is not empty for (O,I)-So stencils, the last term may be written as 



tck+')(i,I)-tck)(i,I) = y(a+l)+(P+I) = c 

for krl. 

Let S,, S,, and A] be as d e f d  in the proof of Theorem 2. Now, the first iteration can begin at node (i,l) at 

time, 

By the definition of an (a,P,y)-SO stencil, 

(i-g)(a+l)-1 if g- i<O 
*A8-i {(y+ i-g)(a+l)+p if g - i ~ O  

with equality when g-i=-1 and when g-i=y. 

By using (lo), (9) can be written as 

r(l)(i- 1 ,I) + (a + 1) } 

and if we choose t(l)(l,l)=l, it follows from an induction on i that 

rcl)(i,l) = I+(i-I)(a+I) 

When i = l ,  

r (z)( l , l ) - r ( l~( l , l )  = max {[~(')(Y+~J)+P], max [t'l)(g,l)+ Ag-j] ) 
tga1 I S-lES,} 

and rc2)(l,l)-r[1)(1,1)=l+y(a+l)+P from (10),(12), and from an induction of i in equation (i3), equation (8) 
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follows for k= 1. 

Next, assume (8) is true for k-1, and prove true for k. 

When i= l ,  

and 

+k+1)(1,1) - &k)(l,l) = f(k)(l,l) - r(k-yl,l) = c 

from (10) and (12). Hence (14) is true for i= l ,  and by induction on i in equation (14), the theorem is proven. 
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